ВСЕ О ПИЛОТАЖНЫХ КОРДОВЫХ МОДЕЛЯХ (ALL ABOUT CONTROL LINE AEROBATIC MODELS )










 

Микро-ТРД для беспилотных летательных аппаратов

В.В. Ростопчин , ЦНИИ АРКС, 23 ноября 2005 года




В статье рассматриваются характеристики и конструктивные особенности микро-ТРД, выпускаемых для модельной авиации. Анализ характеристик показывает серьезные перспективы таких двигателей в беспилотной авиации специального (военного, гражданского и экспериментального) назначения. Силовая установка является важнейшей составной частью БЛА, поскольку уровень ее технического совершенства позволяет обеспечить необходимые тактико-технические характеристики ЛА. Развитие технологии изготовления воздушно-реактивных двигателей в сочетании с использованием методов математического моделирования газодинамических процессов и прочностных расчетов термонагруженных деталей позволили целому ряду предприятий подойти к полномасштабному производству малоразмерных воздушно-реактивных двигателей (микро-ТРД, микро-ТВД и микро- ПуВРД). Основным потребителем этого продукта до недавнего времени были авиамоделисты, создающие летающие копии пилотируемой техники. Однако в последнее время стали появляться образцы БЛА, использующие в силовой установке малоразмерные ТРД (например, макет БЛА ВВП "Штиль-3", Рис.1). Примечательно, что первый публично представленный такой образец имеет составную силовую установку из трех малоразмерных ТРД, которая, по данным разработчика, обеспечивает БЛА как вертикальный взлет, так и взлет по-самолетному. Так как летающие модели-копии пилотируемых самолетов предназначены, главным образом для имитации полета настоящего реактивного самолета в пределах визуальной близости к оператору, то и характеристики ТРД являются соответствующими. Однако, сам по себе, факт создания микро ВРД является примечательным и следует ожидать в самое ближайшее время появление целого семейства БЛА с силовыми установками на основе ВРД. Поэтому вопрос анализа конструкции и оценки располагаемых характеристик микро -ТРД является достаточно важным. Тем более что малые размеры конструктивных элементов, из которых состоит такой двигатель, создают определенные проблемы при попытке получения высоких удельных показателей, а предприятия-изготовители, как правило, не предоставляют полной информации о своих изделиях.

Определение эксплуатационных характеристик микро - ТРД
Как известно в состав силовой установки (СУ) ЛА, в данном случае БЛА, входят входное устройство, ВРД с выходным устройством, система управления тягой ТРД (правильнее вектором тяги) и система топливоподачи от топливных баков к двигателю. Основной величиной, характеризующей ВРД как элемент силовой установки ЛА, является создаваемая им сила тяги, которая является равнодействующей всех сил, действующих на внутренние и внешние поверхности ВРД. Обычно такое определение относится к понятию внутренняя тяга ВРД. При анализе эксплуатационных характеристик ВРД в составе ЛА используют понятие эффективной тяги ВРД, которая учитывает еще и потери во входном и выходном устройствах. В общем случае внутренняя тяга ТРД (далее для простоты просто тяга) определяется по известному выражению [1,2]:

Для анализа характеристик ВРД требуется понимание его устройства и знание значений основных величин, которые производители, как правило, не указывают в документации на подобные двигатели. Конструктивно все выпускаемые микро-ТРД представляют собой ТРД с центробежным одноступенчатым компрессором с односторонним входом и одноступенчатой осевой газовой турбиной (рис. 2). Применяется испарительная камера сгорания. Как правило, все микро-ТРД оснащаются входным устройством, имеющим конфигурацию близкую к лемнискате (рис.3).

Наружный корпус микро-ТРД представляет собой тонкостенную обечайку из жаростойкой стали, которая обеспечивает проход воздуха из спрямляющего аппарата компрессора через отверстия в кожухе внутрь камеры сгорания к испарительным трубкам. (рис.4)

Малая размерность двигателя по расходу воздуха не позволяет использовать отработанные конструктивные решения в практике авиационного двигателестроения.

Выходным устройством у такого двигателя является дозвуковое сужающееся сопло, образуемое наружной обечайкой и центральным телом в виде тонкостенной оболочки, закрывающим втулочное сечение рабочего колеса газовой турбины (рис.5).

Компоновка микро-ТРД со снятой наружной обечайкой показана на рис.6. Ротор двигателя образуется валом 1, на который спереди насажено и зафиксировано винтом 6 рабочее колесо центробежного компрессора 7, а сзади рабочее колесо газовой турбины 12, фиксирующееся на валу винтом 5. Вал 1 устанавливается во внутреннем корпусе статора 3 на двух подшипниках 2 и 4. За рабочим колесом компрессора 7 установлен статор компрессора со спрямляющим аппаратом 8. Кожух камеры сгорания 9 крепится к сопловому аппарату газовой турбины 11, а топливный коллектор 10 располагается в кольцевой нише между кожухом камеры сгорания и фланцем корпуса соплового аппарата. Наружная обечайка выходного устройства 13 имеет свой фланец, с помощью которого она болтами крепится к фланцу соплового аппарата. Центральное тело устанавливается и центруется с помощью радиальных пластинчатых кронштейнов (хорошо видны на рис.5) наружной обечайкой выходного устройства.

Эксплуатационные характеристики (высотно-скоростные и дроссельные) с учетом вышеизложенных зависимостей могут быть определены для всего семейства микро-ТРД, выпускаемого предприятиями за рубежом (В России пока подобные двигатели не нашли широкого применения). Рассмотрим высотно - скоростные характеристики (ВСХ) микро-ТРД по внутренним параметрам с расчетной степенью сжатия в компрессоре 3,0. Расчетные ВСХ получены с учетом установки дозвукового воздухозаборника перед входом в центробежный компрессор. Расчетные параметры рабочего процесса микро-ТРД приведены в табл.1.

Рис. 11. Зависимости и двигателя по высоте и скорости полета


На рис. 9-11 приведены ВСХ микро-ТРД и зависимости характерных параметров от высоты и скорости полета. Как видно из схемы микро-ТРД в них реализуются закон регулирования:

В этом случае уравнение линии совместных режимов компрессора и турбины, как известно [1,2], имеет вид:

Установка нерегулируемого выходного устройства в виде сужающегося сопла с центральным телом привела к тому, что при скоростях полета более М~0,45 выходное устройство реализует предельное значение =1,85 и появляется добавок тяги от давления недорасширенного газа по жидкому контуру (рис.10). Следует отметить характерное увеличение запаса устойчивости компрессора при уменьшении приведенной частоты вращения ротора с увеличением скорости полета (рис. 11). Анализ ВСХ и особенностей изменения параметров рабочего процесса ТРД показывает, что при соответствующем подборе ТРД под характеристики планера можно создать БЛА, обладающий достаточно высокими летно-техническими характеристиками. Тем не менее, уровень экономичности таких двигателей не позволит иметь относительно большие продолжительности полета БЛА. Также следует иметь ввиду, что целевое назначение и малые размеры подобных двигателей не позволяют иметь высокоэффективную систему автоматического управления, что неизбежно скажется, прежде всего, на приемистости двигателя и точности выдерживания заданного дроссельного режима. Необходимость расчета дроссельных характеристик микро-ТРД обусловлена тем, что постоянно на предельных режимах ЛА, как правило, не летают. Основные рабочие режимы двигателей силовых установок лежат в диапазонах от 75 до 95% от максимального режима. Следовательно, оценка характеристик микро-ТРД на дроссельных режимах имеет смысл.

Как видно из графиков (рис.12 и 13) дроссельные характеристики рассматриваемых двигателей не имеют каких-либо ярко выраженных особенностей, требующих особых исследований. Следует учитывать и то, что заявляемые производителем показатели экономичности (минутный расход топлива) отличаются от расчетных примерно на 30% в большую сторону. Это объясняется относительно низкими уровнями к.п.д. элементов газотурбинного тракта, о которых, как правило, в открытых источниках производители не сообщают. Конструктивное исполнение этих двигателей свидетельствует, что приемистость таких двигателей весьма неудовлетворительна:

  • газовая турбина неохлаждаемая и возможен ее перегрев;
  • запас устойчивости компрессора с увеличением приведенной частоты падает и возможно попадание компрессора в условия, способствующие возникновению неустойчивой работы;
  • возможен срыв пламени в камере сгорания.

Анализ возможных динамических характеристик микро-ТРД позволяет сделать вывод, что динамика таких двигателей по тяге низкая: переход от режима МГ (малый газ) до режима МАКСИМАЛ занимает время не менее 30 с. Также весьма сложным и проблематичным является процесс запуска таких двигателей: отсутствие простейшего топливного автомата запуска (ТАЗ) требует дополнительной емкости с горючим газом для запуска камеры сгорания с последующим переходом на топливо. Система смазки опор ротора двигателя представляет собой одну или систему струйных форсунок, подающих топливо (авиационный керосин) на подшипники. Иногда для улучшения смазочных свойств в керосин добавляют парафин, иногда 4...5% моторного масла [3]. На рис.15 показан вариант смазки опор микро-ТРД. Смазочная смесь через трубопровод подводится к подшипнику передней опоры.

Наддув передней опоры осуществляется воздухом, отбираемым от рабочего колеса компрессора через зазор между стенкой рабочего колеса и стойкой статора компрессора. Через подшипник передней опоры, зазор между валом ротора и внутренним корпусом статора двигателя смазочно-воздушная смесь подается к подшипнику задней опоры. Пройдя подшипник задней опоры, смесь выбрасывается в проточную часть газовой турбины. Ресурсные показатели выпускаемых микро-ТРД находятся на уровне 100...120 часов наработки при условии регулярного выполнения регламентных работ через каждые 25...30 часов. Предприятия-изготовители рекомендуют через каждые 50 часов наработки отправлять двигатели на завод для оценки их технического состояния. На практике такие двигатели эксплуатируются по техническому состоянию с заменой выходящих из строя деталей при каждом осмотре. Основным требованием при эксплуатации микро-ТРД является обеспечение соответствия типа и чистоты топлива, рекомендуемым предприятиями-изготовителями.

Структура, выпускаемого предприятиями, типоряда микро-ТРД
Структура типоряда, выпускаемых предприятиями микро-ТРД в виде гистограммы по внутренней тяге и степени повышения давления в компрессоре для условий стенда при САУ представлена на рис.16-17.

Так как, основное назначение выпускаемых микро-ТРД - установка на летающие модели пилотируемых ЛА, то анализ структуры выпускаемых двигателей показывает четкую ориентацию на потребителя относительно недорогих изделий.


Рис. 17. Структура типоряда по степени повышения давления в компрессоре


В среднем отпускная с завода цена таких двигателей лежит в пределах 17...25 $/Н тяги (рис.18) или, если ориентироваться на массу микро-ТРД, 1600...2000 $/кг массы конструкции.

В некоторых случаях есть смысл в экспресс оценке массо - габаритных и стоимостных показателях. Для этого на графиках (рис.18-20) приведены соответствующие степенные полиномы, описывающие зависимости стоимости, массы, длины и диаметра микро-ТРД от его тяги в условиях стенда.

Приведенные полиномы можно использовать при оценке возможности использования микро-ТРД в разрабатываемых конструкциях. Однако они дают достаточно грубую оценку и при более глубоких исследованиях или проведения эскизного проектирования необходимо переходить к данным, которые предоставляет изготовитель микро-ТРД.


Рис.20. Взаимосвязь длины микро-ТРД (без стартера во втулке компрессора) и его тяги


Представленные результаты исследования показывают, что микро-ТРД могут играть существенную роль в становлении беспилотной техники не только в модельном классе, но и специального назначения. Опыт создания и эксплуатации подобных двигателей является бесценным и должен быть использован всеми разработчиками и производителями беспилотной техники.

Литература

  • Б.С. Стечкин, П.К. Казанджан, Л.П. Алексеев, А.Н. Говоров, Н.Е. Коновалов, Ю.Н. Нечаев, Р.М. Федоров. Теория реактивных двигателей. Рабочий процесс и характеристики. М.: Государственное издательство оборонной промышленности, 1958.
  • Теория и расчет воздушно-реактивных двигателей/Под ред. С.М. Шляхтенко. М.: Машиностроение, 1987.
  • Handbuch Modellstrahlturbine TJ-67. Alfred Frank Modellturbinen.Tanneneckstra?e 27.D-93453 Neukirchen b. Hl. Bl. www.frankturbine.de


Создан 06 авг 2011



  Комментарии       
Имя или Email


При указании email на него будут отправляться ответы
Как имя будет использована первая часть email до @
Сам email нигде не отображается!
Зарегистрируйтесь, чтобы писать под своим ником
 
Каталог сайтовvseSdelki.info - товары, услуги, объявления, каталоги Украина онлайн
СЧЕТЧИК КЛИКОВ НА САЙТЕ: